

Integrated Mass and Energy Balance of olefin plants with PI System and Sigmafine

Marco Lanteri, Industry Principal Refining & Petrochemicals 17th April 2018

© Copyright 2018 OSIsoft, LLC

Customer situation

- Business
 - Large producer of olefins (ethylene and propylene)
 - Large producer of polyolefins
- Process
 - Multiple plants with several cracking furnaces each
 - Main feedstock: ethane
 - Interconnections of utilities among plants, especially steam system

Customer situation

- Existing infrastructure
 - PI[®] system for process and laboratory data (one dedicated to each plant)
 - Excel based reports based on raw data aggregation

Requirements: a scalable solution natively integrated in existing infrastructure

- Scalability
 - Support changes in the plants
 - Add plants to existing base
 - Possibility to expand solution to include polyolefins
- Integration
 - Become seamless part of existing infrastructure
 - Boost corporate accounting and reporting in a fully auditable and trackable environment

Objective: a unique solution for accounting and engineering purposes

- Production accounting
 - Get accurate production and consumption of materials
 - Provide validated and reconciled figures to finance (ERP, corporate reporting)
- Engineering
 - Support users with reliable parameters and KPIs of main equipment

Achieving native integration

Sigmafine plugs in the PI Asset Framework

_FlashTemplate _FlowTemplate

Sigmafine populates AF with templates for equipment, tanks, meters and streams 🖊 : 🗌 🔎 🗉 Name △ Value ActualVolume 0 Am3 0 Nm3 1 CompensatedVolume DataTable Components ComponentSlate Data Table Edit E CorrectedMass Component Molar Fraction CorrectedMassTolera.. 0.13931105384. 0.04513514857. OXYGEN CorrectedVolumeTole. NITROGEN 0.74075530364 CARBON DIOXIDE 0.07479849393 CorrectedWeight E CostCenter 🗊 🔳 💷 Density DesignGravity

Elements

Elements inherits properties from templates and are linked each other through element connectivity

Calculations to support measurement compensation, accounting, thermodynamic and steam tables รู้อี่ Component Mass Balance รู้อี่ Composition Tracking รู้อี่ Energy Balance รู้อี่ Gross Error Analysis รู้อี่ Quality Tracking รู้อี่ Sigmafine Balance รู้อี่ Volume Balance

Analyses Rule

Enrich AF with the Sigmafine plugins to perform mass and energy balance data validation and reconciliation

Graphical Sigmafine model within PI system

Overall architecture

OSIsoft

Targeting Business and Process Requirements in one shot

Business and Engineering Targets

ACCOUNTING

Most valuable productions Most valuable consumptions Specific hydrocarbon loss and flaring Ethylene yield Specific energy consumption Specific chemicals consumption Most relevant utilities consumption including integrated steam system

ENGINEERING

Cracking furnaces' efficiency Cracking furnaces' duty and heat recovery

Power consumption of largest compressors and turbines (per stage)

Efficiency of largest compressors and turbines (per stage)

Detailed Sigmafine model merges Accounting and Engineering targets in one scenario

- Data validation rules within PI AF
 - Handling BAD values
 - Data freeze detection
 - Data constraint / replacement
- Mass and energy balance analysis
 - Solve simultaneous mass and energy balance

ADVANTAGES	DISADVANTAGES
Increased redundancy level	Higher model complexity
Allows calculation of both material and	Non-linear model requiring iterative
energy related indicators	solution

Evaluation of unmeasured streams from valve opening

- Use Sigmafine PI AF templates for valves supporting ISA-like calculation based on valve type and characteristics (e.g. flare flows)
- Include tables in PI AF to look up for flows according to valve opening (e.g. steam let down stations)

Name 🗠	Value	Description
ActualOpening	0,0164441043390312 -	Opening of the valve
🗉 Area	0,010703914872114	Current valve area according to v
CriticalFlow	False	Check for critical (chocked) flow
🗉 Cv	545	Rated valve coefficient
El EnergyTolerance	0 kJ	Tolerance
🗉 F_gamma	0,88428571428571434	gamma gas / gamma air
🗉 Gamma	1,238	Cp/Cv (air = 1.4)
InferredStatus		Inferred status
🗉 Kv	632,19999999999993	Rated valve coefficient
MassTolerance	17,4667252185045 kg	Tolerance
MeasuredEnergy	0 kJ	Measured flow energy
MeasuredMass	873,336260925224 kg	Valve mass flow
MeasuredVolume	0 Nm3	Valve normal volume flow
🗉 MolecularWeight	28,05 kg/kmol	Molecular Weight
ObjectStatus	IS	In service out of service
🗉 Pin	7,50097012910549 bar(g)	Inlet Relative Pressure
🗉 Pout	2,26295077553684 bar(g)	Outlet Relative Pressure
ReconciledMassCorre	0,1351 kg	Reconciled correction
E ReconciledMassTest1	0,0079	Test1
ReconciledMassTest2	0,0049	Test2
E ReconciledVolumeCor	0 Nm3	Reconciled correction
El ReconciledVolumeTest1	0	Test1
E ReconciledVolumeTest2	0	Test1
🗉 Rho_in	9,32 kg/m3	Density at inlet conditions
🗉 Temperature	47,5734640371814 °C	Temperature of the fluid
🗉 Туре	globe	Valve type (globe, rotary, butterf
VolumeTolerance	0 Nm3	Tolerance for volume balance
🗉 x	0,61520835427577358	Critical pressure ratio
Ш х_т	0,7	Critical pressure ratio
	177777777777777777777777	77 7777777777777777777777777777777777

Evaluation of streams' flow rate and properties through Sigmafine Thermodynamic extension

- Evaluation of phase equilibrium through equations of state (e.g. Peng-Robinson) to determine unmeasured vapor and liquid flow rate
- Predict compositions, specific heat, enthalpy, etc. to support the energy balance calculation

Select flash options:	
EoS Method:	PR (Default)
BIC Initialization:	Set To Zero (Default)
Flash Type:	Flash (given temperature and pressure)
Internal Phase:	Mixed Phase (Default)
Temperature:	Temperature
Pressure:	AbsolutePressure
Calculation Type:	Enthalpy of Mixture
Flash Attribute:	Flash 💌
Phase:	Of Mixture (default)
	Of Moture (default)
	Vapor

Detailed modeling of a cracking furnace

OSIsof

- Estimation of unknown inputs:
 - Air flow to burners
 - Calculation of reaction heat based on conversion
- Output of data reconciliation:
 - Estimation of heat recovery from flue gases
 - Estimation of heat losses to stack and radiant heat losses
 - Reconciled process duty and efficiency
 - Effectiveness of quench heat exchangers

Results and next steps

Reconciled data provide reliable accounting figures

Gas ethylene production is in reality lower than expected

Liquid Ethylene Production

Production in ktpd

Reconciled data improve KPIs accuracy

 Inaccurate oxygen measurement in furnace flue gases is overcome by use of redundant information

20

Improve reliability in Production Accounting and Energy monitoring

Large olefin producers wants reliable production

accuracy for KPIs of energy intense equipment

data for corporate accounting and better

CHALLENGE

COMPANY and GOAL

- System is large including three production plants, large integrated steam system and auxiliaries
- Business and Engineering look at data with a different level of detail (plant vs equipment)

SOLUTION

Use PI AF to structure the data in assets and link with existing PI systems, plugging Sigmafine to perform the data analyses

Undisclosed

Customer

 Got material production and consumption, KPIs and main parameters of all furnaces and main compressors in one shot

RESULTS

Higher data consistency and robustness in KPIs calculation and increased plant knowledge

- Corporate data are accurate and underperforming production can be easily identified
- For the first time there is one steam distribution model making life easier for the energy manager

Next steps... from olefins to polyolefins

- Expand the current system to include polyolefins
 - Mass Balance of each line
 - Batch tracking and data aggregation by batch
- Challenges
 - Semi-Batch process with many material movements currently not well tracked
- Currently under evaluation
 - Use of Sigmafine Material Tracking algorithm to provide information such as batch number and material codes for each production lot
 - Aggregation rule associated with PI Event Frame generation

Contact Information

Marco Lanteri

marco.lanteri@pimsoftinc.com

Industry Principal Refining & Petrochemicals

Pimsoft S.p.A.

Thank You

